Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621138

RESUMO

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Assuntos
Arecaceae , Óleos Industriais , Ecossistema , Florestas , Biodiversidade , Agricultura , Árvores , Óleo de Palmeira , Conservação dos Recursos Naturais
2.
PeerJ ; 12: e17125, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577414

RESUMO

Rainforest conversion and expansion of plantations in tropical regions change local microclimate and are associated with biodiversity decline. Tropical soils are a hotspot of animal biodiversity and may sensitively respond to microclimate changes, but these responses remain unexplored. To address this knowledge gap, here we investigated seasonal fluctuations in density and community composition of Collembola, a dominant group of soil invertebrates, in rainforest, and in rubber and oil palm plantations in Jambi province (Sumatra, Indonesia). Across land-use systems, the density of Collembola in the litter was at a maximum at the beginning of the wet season, whereas in soil it generally varied little. The community composition of Collembola changed with season and the differences between land-use systems were most pronounced at the beginning of the dry season. Water content, pH, fungal and bacterial biomarkers, C/N ratio and root biomass were identified as factors related to seasonal variations in species composition of Collembola across different land-use systems. We conclude that (1) conversion of rainforest into plantation systems aggravates detrimental effects of low moisture during the dry season on soil invertebrate communities; (2) Collembola communities are driven by common environmental factors across land-use systems, with water content, pH and food availability being most important; (3) Collembola in litter are more sensitive to climatic variations than those in soil. Overall, the results document the sensitivity of tropical soil invertebrate communities to seasonal climatic variations, which intensifies the effects of the conversion of rainforest into plantation systems on soil biodiversity.


Assuntos
Artrópodes , Solo , Animais , Solo/química , Floresta Úmida , Estações do Ano , Invertebrados , Água
3.
Zootaxa ; 5418(5): 551-575, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38480341

RESUMO

Four new species of trachelid spiders belonging to the genus Utivarachna Kishida, 1940 are described: U. angsoduo sp. nov., U. balonku sp. nov., U. rimba sp. nov., and U. trisula sp. nov. Part of the EFForTS project, the spider specimens were uncovered in a canopy fogging collection of tree crown arthropods along a land-use gradient from rainforest via jungle rubber (rubber agroforestry) to monocultures of rubber and oil palm in Jambi Province, Sumatra, Indonesia. Three of the proposed new species were found exclusively in rainforest or jungle rubber agroforest (U. angsoduo sp. nov., U. rimba sp. nov., U. trisula sp. nov.), and one of them exclusively in monocultures of rubber trees (U. balonku sp. nov.). We provide photographs and distribution maps for the proposed new species, and discuss their potential ecology based on their sampling locations. We also encountered a fifth species of the genus in all four land-use systems, U. phyllicola Deeleman-Reinhold, 2001, one of two species of the genus previously recorded from Sumatra, and also provide photographs and distribution maps for this species in the research area of the EFForTS project.


Assuntos
Borracha , Aranhas , Animais , Indonésia , Floresta Úmida , Distribuição Animal
4.
Nature ; 627(8002): 116-122, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355803

RESUMO

Terrestrial animal biodiversity is increasingly being lost because of land-use change1,2. However, functional and energetic consequences aboveground and belowground and across trophic levels in megadiverse tropical ecosystems remain largely unknown. To fill this gap, we assessed changes in energy fluxes across 'green' aboveground (canopy arthropods and birds) and 'brown' belowground (soil arthropods and earthworms) animal food webs in tropical rainforests and plantations in Sumatra, Indonesia. Our results showed that most of the energy in rainforests is channelled to the belowground animal food web. Oil palm and rubber plantations had similar or, in the case of rubber agroforest, higher total animal energy fluxes compared to rainforest but the key energetic nodes were distinctly different: in rainforest more than 90% of the total animal energy flux was channelled by arthropods in soil and canopy, whereas in plantations more than 50% of the energy was allocated to annelids (earthworms). Land-use change led to a consistent decline in multitrophic energy flux aboveground, whereas belowground food webs responded with reduced energy flux to higher trophic levels, down to -90%, and with shifts from slow (fungal) to fast (bacterial) energy channels and from faeces production towards consumption of soil organic matter. This coincides with previously reported soil carbon stock depletion3. Here we show that well-documented animal biodiversity declines with tropical land-use change4-6 are associated with vast energetic and functional restructuring in food webs across aboveground and belowground ecosystem compartments.


Assuntos
Biodiversidade , Metabolismo Energético , Cadeia Alimentar , Floresta Úmida , Animais , Artrópodes/metabolismo , Bactérias/metabolismo , Aves/metabolismo , Sequestro de Carbono , Fezes , Fungos/metabolismo , Indonésia , Oligoquetos/metabolismo , Compostos Orgânicos/metabolismo , Óleo de Palmeira , Borracha , Solo/química , Clima Tropical
5.
Oecologia ; 204(3): 491-504, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265599

RESUMO

Climate change will likely increase habitat loss of endemic tree species and drives forest conversion in mountainous forests. Elevation gradients provide the opportunity to predict possible consequences of such changes. While species compositions of various taxa have been investigated along elevation gradients, data on trophic changes in soil-dwelling organisms are scarce. Here, we investigated trophic changes of the Collembola communities along the northern slope of Changbai Mountain, China. We sampled Collembola in primary forests at seven elevations (800-1700 m asl). We measured individual body lengths and bulk stable isotopes on species level. We further categorized Collembola species into life forms. The community-weighted means of Δ15N and Δ13C values as well as minimum Δ15N values and isotopic uniqueness of Collembola communities increased with increasing elevation, while the range of Δ15N values decreased. Maximum and minimum of Δ13C values differed between elevations but showed no linear trend. Further, Δ15N values of Collembola species occurring across all elevations increased with elevation. Changes in Δ15N values with elevation were most pronounced in hemiedaphic species, while Δ13C values increased strongest with elevation in euedaphic species. Δ15N values increased with decreasing body size in hemiedaphic and euedaphic species. Overall, the results suggest that Collembola species functioning as primary decomposers at lower elevations shift towards functioning as secondary decomposers or even predators or scavengers at higher elevation forests. The results further indicate that access to alternative food resources depends on Collembola life form as well as body size and varies between ecosystems.


Assuntos
Ecossistema , Florestas , Árvores , Isótopos de Carbono/análise , Tamanho Corporal
6.
Oecologia ; 204(1): 133-146, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147134

RESUMO

Plant nutrient uptake and productivity are driven by a multitude of factors that have been modified by human activities, like climate change and the activity of decomposers. However, interactive effects of climate change and key decomposer groups like earthworms have rarely been studied. In a field microcosm experiment, we investigated the effects of a mean future climate scenario with warming (+ 0.50 °C to + 0.62 °C) and altered precipitation (+ 10% in spring and autumn, - 20% in summer) and earthworms (anecic-two Lumbricus terrestris, endogeic-four Allolobophora chlorotica and both together within 10 cm diameter tubes) on plant biomass and stoichiometry in two land-use types (intensively used meadow and conventional farming). We found little evidence for earthworm effects on aboveground biomass. However, future climate increased above- (+40.9%) and belowground biomass (+44.7%) of grass communities, which was mainly driven by production of the dominant Festulolium species during non-summer drought periods, but decreased the aboveground biomass (- 36.9%) of winter wheat. Projected climate change and earthworms interactively affected the N content and C:N ratio of grasses. Earthworms enhanced the N content (+1.2%) thereby decreasing the C:N ratio (- 4.1%) in grasses, but only under ambient climate conditions. The future climate treatment generally decreased the N content of grasses (aboveground: - 1.1%, belowground: - 0.15%) and winter wheat (- 0.14%), resulting in an increase in C:N ratio of grasses (aboveground: + 4.2%, belowground: +6.3%) and wheat (+5.9%). Our results suggest that climate change diminishes the positive effects of earthworms on plant nutrient uptakes due to soil water deficit, especially during summer drought.


Assuntos
Ecossistema , Oligoquetos , Humanos , Animais , Oligoquetos/fisiologia , Biomassa , Plantas , Poaceae , Solo
7.
Commun Biol ; 6(1): 1230, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053000

RESUMO

Carbon allocation of trees to ectomycorrhizas is thought to shape forest nutrient cycling, but the sink activities of different fungal taxa for host resources are unknown. Here, we investigate fungal taxon-specific differences in naturally composed ectomycorrhizal (EM) communities for plant-derived carbon and nitrogen. After aboveground dual labeling of young beech with 15N and 13C, ectomycorrhizas formed with different fungal taxa exhibit strong differences in label enrichment. Secondary Ion Mass Spectrometry (SIMS) imaging of nitrogen in cross sections of ectomycorrhizas demonstrates plant-derived 15N in both root and fungal structures. Isotope enrichment in ectomycorrhizas correlates with that in the corresponding ectomycorrhiza-attached lateral root, supporting fungal taxon-specific N and C fluxes in ectomycorrhizas. The enrichments with 13C and 15N in the symbiosis decrease with increasing C/N ratio of ectomycorrhizas, converging to zero at high C/N. The relative abundances of EM fungal species on roots are positively correlated with 13C enrichment, demonstrating higher fitness of stronger than of less C-demanding symbioses. Overall, our results support that differences among the C/N ratios in ectomycorrhizas formed with different fungal species regulate the supply of the symbioses with host-derived carbon and provide insights on functional traits of ectomycorrhizas, which are important for major ecosystem processes.


Assuntos
Micorrizas , Micorrizas/fisiologia , Simbiose , Nitrogênio , Carbono , Ecossistema , Plantas
8.
PeerJ ; 11: e16018, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025744

RESUMO

Molecular gut content analysis via diagnostic PCR or high-throughput sequencing (metabarcoding) of consumers allows unravelling of feeding interactions in a wide range of animals. This is of particular advantage for analyzing the diet of small invertebrates living in opaque habitats such as the soil. Due to their small body size, which complicates dissection, microarthropods are subjected to whole-body DNA extraction-step before their gut content is screened for DNA of their food. This poses the problem that body surface contaminants, such as fungal spores may be incorrectly identified as ingested food particles for fungivorous species. We investigated the effectiveness of ten methods for body surface decontamination in litter-dwelling oribatid mites using Steganacarus magnus as model species. Furthermore, we tested for potential adverse effects of the decontamination techniques on the molecular detection of ingested prey organisms. Prior to decontamination, oribatid mites were fed with an oversupply of nematodes (Plectus sp.) and postmortem contaminated with fungal spores (Chaetomium globosum). We used diagnostic PCR with primers specific for C. globosum and Plectus sp. to detect contaminants and prey, respectively. The results suggest that chlorine bleach (sodium hypochloride, NaClO, 5%) is most efficient in removing fungal surface contamination without significantly affecting the detection of prey DNA in the gut. Based on these results, we provide a standard protocol for efficient body surface decontamination allowing to trace the prey spectrum of microarthropods using molecular gut content analysis.


Assuntos
Ácaros , Nematoides , Animais , Cadeia Alimentar , Ecossistema , Ácaros/genética , Nematoides/genética , DNA , Cromadoria
9.
Oecologia ; 203(1-2): 37-51, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37709958

RESUMO

Forest canopies maintain a high proportion of arthropod diversity. The drivers that structure these communities, however, are poorly understood. Therefore, integrative research connecting tree species identity and environmental stand properties with taxonomic and functional community composition of canopy arthropods is required. In this study, we investigated how the taxonomic, functional and trophic composition of arboreal spider communities is affected by tree species composition and associated differences in canopy structure and prey availability in temperate forests. We sampled canopy spiders as well as their potential prey using insecticidal fogging in monospecific and mixed stands of native European beech, native Norway spruce and non-native Douglas fir. Trophic metrics were obtained from stable isotope analysis and structural canopy properties were assessed with mobile laser scanning. Monospecific native spruce stands promoted local canopy spider abundance and diversity, but native beech and beech-conifer mixtures had the highest diversity at landscape scale. Spider community composition differed between monospecific stands, with broadleaf-conifer mixtures mitigating these differences. Irrespective of tree species identity, spider abundance, taxonomic diversity, functional richness and isotopic richness increased in structurally heterogeneous canopies with high prey abundances, but functional evenness and trophic divergence decreased. Our study shows that canopy spiders are differentially affected by tree species identity, canopy structure and prey availability. Broadleaf-conifer mixtures mitigated negative effects of (non-native) conifers, but positive mixture effects were only evident at the landscape scale. Structurally heterogeneous canopies promoted the dominance of only specific trait clusters. This indicates that intermediate heterogeneity might result in high stability of ecological communities.


Assuntos
Picea , Aranhas , Animais , Árvores , Florestas , Noruega , Biodiversidade
10.
J Eukaryot Microbiol ; 70(6): e12996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37577763

RESUMO

The tropical Andes are a species-rich and nitrogen-limited system, susceptible to increased nitrogen (N) inputs from the atmosphere. However, our understanding of the impacts of increased N input on belowground systems, in particular on protists and their role in nutrient cycling, remains limited. We explored how increased N affects protists in tropical montane rainforests in Ecuador using high-throughput sequencing (HTS) of environmental DNA from two litter layers. In addition, we manipulated the amount of arbuscular mycorrhizal fungi (AMF) and mesofauna, both playing a significant role in N cycling and interacting in complex ways with protist communities. We found that N strongly affected protist community composition in both layers, while mesofauna reduction had a stronger effect on the lower layer. Changes in concentration of the AMF marker lipid had little effect on protists. In both layers, the addition of N increased phagotrophs and animal parasites and decreased plant parasites, while mixotrophs decreased in the upper layer but increased in the lower layer. In the upper layer with higher AMF concentration, mixotrophs decreased, while in the lower layer, photoautotrophs increased and plant parasites decreased. With reduced mesofauna, phagotrophs increased and animal parasites decreased in both layers, while plant parasites increased only in the upper layer. The findings indicate that to understand the intricate response of protist communities to environmental changes, it is critical to thoroughly analyze these communities across litter and soil layers, and to include HTS.


Assuntos
Micorrizas , Animais , Micorrizas/genética , Floresta Úmida , Nitrogênio , Equador , Microbiologia do Solo , Fungos , Eucariotos , Solo , Plantas
11.
PeerJ ; 11: e15720, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551350

RESUMO

Human activities are increasing the input of atmospheric particulate pollutants to forests. The components of particulate pollutants include inorganic anions, base cations and hydrocarbons. Continuous input of particulate pollutants may affect soil functioning in forests, but their effects may be modified by soil fauna. However, studies investigating how soil fauna affects the effects of particulate pollutants on soil functioning are lacking. Here, we investigated how earthworms and the particulate components interact in affecting soil enzymatic functions in a deciduous (Quercus variabilis) and a coniferous (Pinus massoniana) forest in southeast China. We manipulated the addition of nitrogen (N, ammonium nitrate), sodium (Na, sodium chloride) and polycyclic aromatic hydrocarbons (PAHs, five mixed PAHs) in field mesocosms with and without Eisenia fetida, an earthworm species colonizing forests in eastern China. After one year, N and Na addition increased, whereas PAHs decreased soil enzymatic functions, based on average Z scores of extracellular enzyme activities. Earthworms generally stabilized soil enzymatic functions via neutralizing the effects of N, Na and PAHs addition in the deciduous but not in the coniferous forest. Specifically, earthworms neutralized the effects of N and Na addition on soil pH and the effects of the addition of PAHs on soil microbial biomass. Further, both particulate components and earthworms changed the correlations among soil enzymatic and other ecosystem functions in the deciduous forest, but the effects depended on the type of particulate components. Generally, the effects of particulate components and earthworms on soil enzymatic functions were weaker in the coniferous than the deciduous forest. Overall, the results indicate that earthworms stabilize soil enzymatic functions in the deciduous but not the coniferous forest irrespective of the type of particulate components. This suggests that earthworms may neutralize the influence of atmospheric particulate pollutants on ecosystem functions, but the neutralization may be restricted to deciduous forests.


Assuntos
Poluentes Ambientais , Oligoquetos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Ecossistema , Florestas , Solo
12.
Ecol Evol ; 13(5): e10047, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37139404

RESUMO

Earthworms modulate carbon and nitrogen cycling in terrestrial ecosystems, but their effect may be compromised by the deposition of pollutants from industrial emissions. However, studies investigating how deposited compounds affect the role of earthworms in carbon cycling such as litter decomposition are lacking, although the interactions of earthworms and deposited compounds are important for understanding the impact of pollutants on ecosystems and the potential of earthworms in bioremediation. We performed a 365-day in situ litterbag decomposition experiment in a deciduous (Quercus variabilis) and coniferous (Pinus massoniana) forest in southeast China. We manipulated nitrogen (N), sodium (Na), and polycyclic aromatic hydrocarbons (PAHs) as model compounds during litter decomposition with and without earthworms (Eisenia fetida). After one year, N, Na, and PAH all slowed down litter mass loss, with the effects of Na being the strongest. By contrast, E. fetida generally increased litter mass loss, and the positive effects were uniformly maintained irrespective of the type of compounds added. However, the pathways to how earthworms increased litter mass loss varied among the compounds added and the two forests studied. As indicated by structural equation modeling, earthworms mitigated the negative effects of deposited compounds by directly increasing litter mass loss and indirectly increasing soil pH and microbial biomass. Overall, the results indicate that the acceleration of litter mass loss by earthworms is little affected by deposited compounds, and that earthworms have the potential to mitigate negative impacts of pollutants on litter decomposition and ecosystem processes.

13.
Ecol Evol ; 13(5): e10122, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37223311

RESUMO

Niche theory fundamentally contributed to the understanding of animal diversity. However, in soil, the diversity of animals seems enigmatic since the soil is a rather homogeneous habitat, and soil animals are often generalist feeders. A new approach to understand soil animal diversity is the use of ecological stoichiometry. The elemental composition of animals may explain their occurrence, distribution, and density. This approach has been used before in soil macrofauna, but this study is the first to investigate soil mesofauna. Using inductively coupled plasma optic emission spectrometry (ICP-OES), we analyzed the concentration of a wide range of elements (Al, Ca, Cu, Fe, K, Mg, Mn, Na, P, S, Zn) in 15 soil mite taxa (Oribatida, Mesostigmata) from the litter of two different forest types (beech, spruce) in Central Europe (Germany). Additionally, the concentration of carbon and nitrogen, and their stable isotope ratios (15N/14N, 13C/12C), reflecting their trophic niche, were measured. We hypothesized that (1) stoichiometry differs between mite taxa, (2) stoichiometry of mite taxa occurring in both forest types is not different, and (3) element composition is correlated to trophic level as indicated by 15N/14N ratios. The results showed that stoichiometric niches of soil mite taxa differed considerably indicating that elemental composition is an important niche dimension of soil animal taxa. Further, stoichiometric niches of the studied taxa did not differ significantly between the two forest types. Calcium was negatively correlated with trophic level indicating that taxa incorporating calcium carbonate in their cuticle for defense occupy lower trophic positions in the food web. Furthermore, a positive correlation of phosphorus with trophic level indicated that taxa higher in the food web have higher energetic demand. Overall, the results indicate that ecological stoichiometry of soil animals is a promising tool for understanding their diversity and functioning.

14.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
16.
Ecol Lett ; 26(5): 742-753, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857203

RESUMO

Belowground life relies on plant litter, while its linkage to living roots had long been understudied, and remains unknown in the tropics. Here, we analysed the response of 30 soil animal groups to root trenching and litter removal in rainforest and plantations in Sumatra, and found that roots are similarly important to soil fauna as litter. Trenching effects were stronger in soil than in litter, with an overall decrease in animal abundance in rainforest by 42% and in plantations by 30%. Litter removal little affected animals in soil, but decreased the total abundance by 60% in rainforest and rubber plantations but not in oil palm plantations. Litter and root effects on animal group abundances were explained by body size or vertical distribution. Our study quantifies principle carbon pathways in soil food webs under tropical land use, providing the basis for mechanistic modelling and ecosystem-friendly management of tropical soils.


Assuntos
Ecossistema , Solo , Animais , Floresta Úmida , Cadeia Alimentar , Raízes de Plantas
17.
BMC Ecol Evol ; 23(1): 3, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737705

RESUMO

BACKGROUND: Functional diversity is vital for forest ecosystem resilience in times of climate-induced forest diebacks. Admixing drought resistant non-native Douglas fir, as a partial replacement of climate-sensitive Norway spruce, to native beech forests in Europe appears promising for forest management, but possible consequences for associated biota and ecosystem functioning are poorly understood. To better link forest management and functional diversity of associated biota, we investigated the trophic niches (∆13C, ∆15N) of epigeic generalist predators (spiders and ground beetles) in mixed and pure stands of European beech, Norway spruce and non-native Douglas fir in north-west Germany. We assessed the multidimensional niche structure of arthropod predator communities using community-based isotopic metrics. RESULTS: Whilst arthropod ∆13C differed most between beech (high ∆13C) and coniferous stands (low ∆13C), ∆15N was lowest in non-native Douglas fir. Tree mixtures mitigated these effects. Further, conifers increased isotopic ranges and isotopic richness, which is linked to higher canopy openness and herb complexity. Isotopic divergence of ground beetles decreased with Douglas fir presence, and isotopic evenness of spiders in Douglas fir stands was lower in loamy sites with higher precipitation than in sandy, drier sites. CONCLUSIONS: We conclude that tree species and particularly non-native trees alter the trophic niche structure of generalist arthropod predators. Resource use and feeding niche breadth in non-native Douglas fir and native spruce differed significantly from native beech, with more decomposer-fueled and narrower feeding niches in beech stands (∆13C, isotopic ranges and richness). Arthropod predators in non-native Douglas fir, however, had shorter (∆15N) and simplified (isotopic divergence) food chains compared to native forest stands; especially under beneficial abiotic conditions (isotopic evenness). These findings indicate potential adverse effects of Douglas fir on functional diversity of generalist arthropod predators. As tree mixtures mitigated differences between beech and conifers, mixed stands including (non-native) conifers constitute a promising compromise between economic and conservational interests.


Assuntos
Artrópodes , Besouros , Fagus , Picea , Pseudotsuga , Aranhas , Animais , Árvores , Ecossistema , Florestas
19.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210090, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36373930

RESUMO

Current policy is driving renewed impetus to restore forests to return ecological function, protect species, sequester carbon and secure livelihoods. Here we assess the contribution of tree planting to ecosystem restoration in tropical and sub-tropical Asia; we synthesize evidence on mortality and growth of planted trees at 176 sites and assess structural and biodiversity recovery of co-located actively restored and naturally regenerating forest plots. Mean mortality of planted trees was 18% 1 year after planting, increasing to 44% after 5 years. Mortality varied strongly by site and was typically ca 20% higher in open areas than degraded forest, with height at planting positively affecting survival. Size-standardized growth rates were negatively related to species-level wood density in degraded forest and plantations enrichment settings. Based on community-level data from 11 landscapes, active restoration resulted in faster accumulation of tree basal area and structural properties were closer to old-growth reference sites, relative to natural regeneration, but tree species richness did not differ. High variability in outcomes across sites indicates that planting for restoration is potentially rewarding but risky and context-dependent. Restoration projects must prepare for and manage commonly occurring challenges and align with efforts to protect and reconnect remaining forest areas. The abstract of this article is available in Bahasa Indonesia in the electronic supplementary material. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Assuntos
Ecossistema , Clima Tropical , Biodiversidade , Plantas , Ásia
20.
J Anim Ecol ; 92(2): 454-465, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477808

RESUMO

The ecological stoichiometry theory provides a framework to understand organism fitness and population dynamics based on stoichiometric mismatch between organisms and their resources. Recent studies have revealed that different soil animals occupy distinct multidimensional stoichiometric niches (MSNs), which likely determine their specific stoichiometric mismatches and population responses facing resource changes. The goals of the present study are to examine how long-term forest plantations affect multidimensional elemental contents of litter and detritivores and the population size of detritivores that occupy distinct MSNs. We evaluated the contents of 10 elements of two detritivore taxa (lumbricid earthworms and julid millipedes) and their litter resources, quantified their MSNs and the multidimensional stoichiometric mismatches, and examined how such mismatch patterns influence the density and total biomass of detritivores across three forest types spanning from natural forests (oak forest) to plantations (pine and larch forests). Sixty-year pine plantations changed the multidimensional elemental contents of litter, but did not influence the elemental contents of the two detritivore taxa. Earthworms and millipedes exhibited distinct patterns of MSNs and stoichiometric mismatches, but they both experienced severer stoichiometric mismatches in pine plantations than in oak forests and larch plantations. Such stoichiometric mismatches led to lower density and biomass of both earthworms and millipedes in pine plantations. In other words, under conditions of low litter quality and severe stoichiometric mismatches in pine plantations, detritivores maintained their body elemental contents but decreased their population biomass. Our study illustrates the success in using the multidimensional stoichiometric framework to understand the impact of forest plantations on animal population dynamics, which may serve as a useful tool in addressing ecosystem responses to global environmental changes.


Assuntos
Artrópodes , Oligoquetos , Pinus , Animais , Biomassa , Ecossistema , Florestas , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...